- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kureh, Yacoub H. (3)
-
Porter, Mason A. (3)
-
Brooks, Heather Z. (1)
-
Feng, Michelle (1)
-
Hickok, Abigail (1)
-
Kanjanasaratool, Unchitta (1)
-
Lyu, Hanbaek (1)
-
Topaz, Chad M. (1)
-
Vendrow, Joshua (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Researchers in many fields use networks to represent interactions between entities in complex systems. To study the large-scale behavior of complex systems, it is useful to examine mesoscale structures in networks as building blocks that influence such behavior. In this paper, we present an approach to describe low-rank mesoscale structures in networks. We find that many real-world networks possess a small set of latent motifs that effectively approximate most subgraphs at a fixed mesoscale. Such low-rank mesoscale structures allow one to reconstruct networks by approximating subgraphs of a network using combinations of latent motifs. Employing subgraph sampling and nonnegative matrix factorization enables the discovery of these latent motifs. The ability to encode and reconstruct networks using a small set of latent motifs has many applications in network analysis, including network comparison, network denoising, and edge inference.more » « less
-
Brooks, Heather Z.; Kanjanasaratool, Unchitta; Kureh, Yacoub H.; Porter, Mason A. (, Frontiers for Young Minds)null (Ed.)The COVID-19 pandemic has led to significant changes in how people are currently living their lives. To determine how to best reduce the effects of the pandemic and start reopening communities, governments have used mathematical models of the spread of infectious diseases. In this article, we introduce a popular type of mathematical model of disease spread. We discuss how the results of analyzing mathematical models can influence government policies and human behavior, such as encouraging mask wearing and physical distancing to help slow the spread of a disease.more » « less
-
Feng, Michelle; Hickok, Abigail; Kureh, Yacoub H.; Porter, Mason A.; Topaz, Chad M. (, Frontiers for Young Minds)null (Ed.)Scientists use a mathematical subject called topology to study the shapes of objects. An important part of topology is counting the number of pieces and the number of holes in an object, and researchers use this information to group objects into different types. For example, a doughnut has the same number of holes and the same number of pieces as a teacup with one handle, but it is different from a ball. In studies that resemble activities like “connect-the-dots,” scientists use ideas from topology to study the “shape” of data. Ideas and methods from topology have been used to study the branching structures of veins in leaves, voting in elections, flight patterns in models of bird flocking, and more.more » « less
An official website of the United States government
